Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Fire is a common ecological disturbance that structures terrestrial ecosystems and biological communities. The ability of fires to contribute to ecosystem heterogeneity has been termed pyrodiversity and has been directly linked to biodiversity (i.e., the pyrodiversity–biodiversity hypothesis). Since climate change models predict increases in fire frequency, understanding how fire pyrodiversity influences soil microbes is important for predicting how ecosystems will respond to fire regime changes. Here we tested how fire frequency‐driven changes in burn patterns (i.e., pyrodiversity) influenced soil microbial communities and diversity. We assessed pyrodiversity effects on soil microbes by manipulating fire frequency (annual vs. biennial fires) in a tallgrass prairie restoration and evaluating how changes in burn patterns influenced microbial communities (bacteria and fungi). Annual burns produced more heterogeneous burn patterns (higher pyrodiversity) that were linked to shifts in fungal and bacterial community composition. While fire frequency did not influence microbial (bacteria and fungi) alpha diversity, beta diversity did increase with pyrodiversity. Changes in fungal community composition were not linked to burn patterns, suggesting that pyrodiversity effects on other ecosystem components (e.g., plants and soil characteristics) influenced fungal community dynamics and the greater beta diversity observed in the annually burned plots. Shifts in bacterial community composition were linked to variation in higher severity burn pattern components (grey and white ash), suggesting that thermotolerance contributed to the observed changes in bacterial community composition and lower beta diversity in the biennially burned plots. This demonstrates that fire frequency‐driven increases in pyrodiversity augment biodiversity and may influence productivity in fire‐prone ecosystems.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Societal Impact StatementAgricultural practices have had a negative impact on the physical, chemical, and biological components of soil. Perennial cropping systems that facilitate positive soil microbial interactions could not only rebuild soils but also sustain productivity through expected variations in environmental conditions. Here, we show the presence of arbuscular mycorrhizal (AM) fungi, soil symbionts that can improve host performance and soil health, increased the growth of intermediate wheatgrass, a novel perennial grain crop, in populations that have been increasingly bred for desirable agricultural characteristics. The right pairing of intermediate wheatgrass and a beneficial AM fungal community could lead to more sustainable agroecosystems. SummaryIntermediate wheatgrass (IWG) is a novel perennial grain that can provide many soil health benefits in agroecosystems; however, little is known about how selection for agronomic traits has impacted interactions with soil biota. Here, we assess how the selection for agronomic traits in IWG has impacted its relationship with arbuscular mycorrhizal (AM) fungi.First, growth response to AM fungi was compared across five generations of IWG with varying degrees of selection. Second, variation in AM fungal responsiveness was compared among genets of IWG individuals within a more advanced generation. Finally, a meta‐analysis was performed on all published studies exploring AM fungal inocula effects on IWG performance to increase understanding of selection effects.AM fungal responsiveness increased with selection for agronomic traits, responsiveness varied among genets in the advanced generation, and a majority of genets performed better in the presence of AM fungi. The meta‐analysis supported the findings that AM fungal responsiveness has increased with selection in IWG.Further studies are needed to realize the combined potential soil health and sustainability benefits of IWG and AM fungi, including assessment of symbiotic benefits beyond biomass production, identification of IWG traits correlated with responsiveness, and characterization of AM fungal community response to IWG.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Although several studies have shown increased native plant establishment with native microbe soil amendments, few studies have investigated how microbes can alter seedling recruitment and establishment in the presence of a non-native competitor. In this study, the effect of microbial communities on seedling biomass and diversity was assessed by seeding pots with both native prairie seeds and a non-native grass that commonly invades US grassland restorations, Setaria faberi. Soil in the pots was inoculated with whole soil collections from ex-arable land, late successional arbuscular mycorrhizal (AM) fungi isolated from a nearby tallgrass prairie, with both prairie AM fungi and ex-arable whole soil, or with a sterile soil (control). We hypothesized (1) late successional plants would benefit from native AM fungi, (2) that non-native plants would outcompete native plants in ex-arable soils, and (3) early successional plants would be unresponsive to microbes. Overall, native plant abundance, late successional plant abundance, and total diversity were greatest in the native AM fungi+ ex-arable soil treatment. These increases led to decreased abundance of the non-native grass S. faberi. These results highlight the importance of late successional native microbes on native seed establishment and demonstrate that microbes can be harnessed to improve both plant community diversity and resistance to invasion during the nascent stages of restoration.more » « less
-
Restoration quality of native prairie can be improved by reintroducing key organisms from the native plant microbiome such as arbuscular mycorrhizal (AM) fungi. Here, we assess whether the positive effects of a native mycorrhizal inoculation observed during the first growing season remained at the end of the fourth growing season. In 2016, an experiment was initiated that assessed the response of a restored tallgrass prairie to an inoculation density gradient of native mycorrhizal fungi ranging from 0 to 8,192 kg/ha. First year results indicated that native plant establishment benefited from high but not low densities of native mycorrhizal inocula, resulting in improvements in native plant abundance, richness, and diversity. To assess whether these effects persist in later growing seasons, we resampled the prairie restoration in 2020 and analyzed the data similarly. Results from the fourth growing season indicated that the pattern of responses had persisted; the positive effects of inoculation observed during the first growing season remained after four growing seasons as demonstrated by improvements in total and native plant diversity and reduced non‐native abundance. Additionally, the low densities of mycorrhizal amendment that were not initially effective were found to reduce non‐native abundance in the fourth growing season, suggesting that low densities of mycorrhizal amendment can be amplified via positive plant‐AM fungal feedback to suppress weeds following the introduction of lesser amounts of AM fungi.more » « less
An official website of the United States government
